Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4643328 | Journal of Computational and Applied Mathematics | 2006 | 11 Pages |
Iterative schemes, such as LSQR and RRGMRES, are among the most efficient methods for the solution of large-scale ill-posed problems. The iterates generated by these methods form semiconvergent sequences. A meaningful approximation of the desired solution of an ill-posed problem often can be obtained by choosing a suitable member of this sequence. However, it is not always a simple matter to decide which member to choose. Semiconvergent sequences also arise when approximating integrals by asymptotic expansions, and considerable experience and analysis of how to choose a suitable member of a semiconvergent sequence in this context are available. The present note explores how the guidelines developed within the context of asymptotic expansions can be applied to iterative methods for ill-posed problems.