Article ID Journal Published Year Pages File Type
4643349 Journal of Computational and Applied Mathematics 2006 12 Pages PDF
Abstract

Support vector machines are powerful kernel methods for classification and regression tasks. If trained optimally, they produce excellent separating hyperplanes. The quality of the training, however, depends not only on the given training data but also on additional learning parameters, which are difficult to adjust, in particular for unbalanced datasets. Traditionally, grid search techniques have been used for determining suitable values for these parameters. In this paper, we propose an automated approach to adjusting the learning parameters using a derivative-free numerical optimizer. To make the optimization process more efficient, a new sensitive quality measure is introduced. Numerical tests with a well-known dataset show that our approach can produce support vector machines that are very well tuned to their classification tasks.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,