Article ID Journal Published Year Pages File Type
4643381 Journal of Computational and Applied Mathematics 2006 17 Pages PDF
Abstract

In this paper, we numerically solve the eigenvalue problem Δu+λu=0Δu+λu=0 on the fractal region defined by the Koch Snowflake, with zero-Dirichlet or zero-Neumann boundary conditions. The Laplacian with boundary conditions is approximated by a large symmetric matrix. The eigenvalues and eigenvectors of this matrix are computed by ARPACK. We impose the boundary conditions in a way that gives improved accuracy over the previous computations of Lapidus, Neuberger, Renka and Griffith. We extrapolate the results for grid spacing h   to the limit h→0h→0 in order to estimate eigenvalues of the Laplacian and compare our results to those of Lapidus et al. We analyze the symmetry of the region to explain the multiplicity-two eigenvalues, and present a canonical choice of the two eigenfunctions that span each two-dimensional eigenspace.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,