Article ID Journal Published Year Pages File Type
4643401 Journal of Computational and Applied Mathematics 2006 14 Pages PDF
Abstract

Permanence of a dispersal single-species population model is considered where environment is partitioned into several patches and the species requires some time to disperse between the patches. The model is described by delay differential equations. The existence of food-rich patches and small dispersions among the patches are proved to be sufficient to ensure partial permanence of the model. It is also shown that partial permanence ensures permanence if each food-poor patch is connected to at least one food-rich patch and if each pair in food-rich patches is connected. Furthermore, it is proved that partial persistence is ensured even under large dispersion among food-rich patches if the dispersion time is relatively small.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,