Article ID Journal Published Year Pages File Type
4643559 Journal of Computational and Applied Mathematics 2006 25 Pages PDF
Abstract

The restrictively preconditioned conjugate gradient (RPCG) method for solving large sparse system of linear equations of a symmetric positive definite and block two-by-two coefficient matrix is further studied. In fact, this RPCG method is essentially the classical preconditioned conjugate gradient (PCG) method with a specially structured preconditioner. Within this setting, we present algorithmic descriptions of two restrictive preconditioners that, respectively, employ the block Jacobi and the block symmetric Gauss–Seidel matrix splitting matrices as approximations to certain matrices involved in them, and give convergence analyses of the correspondingly induced two PCG methods. Numerical results show that these restrictive preconditioners can lead to practical and effective PCG methods for solving large sparse systems of linear equations of symmetric positive definite and block two-by-two coefficient matrices.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,