Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4643573 | Journal of Computational and Applied Mathematics | 2006 | 27 Pages |
ECT-spline curves are generated from different local ECT-systems via connection matrices. If they are nonsingular, lower triangular and totally positive there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized either to form a nonnegative partition of unity or to have integral one. In this paper such ECT-B-splines are defined by generalized divided differences. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor–Mansion–Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines [Mühlbach and Tang, Calculation of ECT-B-splines and of ECT-spline curves recursively, in preparation].There is an ECT-spline space naturally adjoint to every ECT-spline space. We also construct B-splines via generalized divided differences for this space and study relations between the two adjoint spaces.