Article ID Journal Published Year Pages File Type
4644161 Journal de Mathématiques Pures et Appliquées 2010 27 Pages PDF
Abstract

In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n⩾2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations.

RésuméDans cet article, on s'intéresse à une classe de lois de balance multi-dimensionnelles avec une source non locale, qui résultent des modèles simplifiés pour l'hydrodynamique des gaz irradiants. En utilisant la méthode de l'énergie, la stabilité, le taux de convergence des solutions au voisinage des états constants, les ondes planes régulières et les états périodiques sont étudiés.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics