Article ID Journal Published Year Pages File Type
4644846 Applied Numerical Mathematics 2016 15 Pages PDF
Abstract

In this paper we derive a multi-dimensional mesh adaptation method which produces optimal meshes for quadratic functions, positive semi-definite. The method generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the tensor metric being computed based on interpolation error estimates. It does not depend, a priori, on the PDEs at hand in contrast to residual methods. The estimated error is then used to steer local modifications of the mesh in order to reach a prescribed level of error in LpLp-norm or a prescribed number of elements. The LpLp-norm of the estimated error is then minimized in order to get an optimal mesh. Numerical examples in 2D and 3D for analytic challenging problems and an application to a Computational Fluid Dynamics problem are presented and discussed in order to show how the proposed method recovers optimal convergence rates as well as to demonstrate its computational performance.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,