Article ID Journal Published Year Pages File Type
4645059 Applied Numerical Mathematics 2015 15 Pages PDF
Abstract

An adaptive method is developed for solving one-dimensional systems of hyperbolic conservation laws, which combines the rezoning approach with the finite volume weighted essentially non-oscillatory (WENO) scheme. An a posteriori error estimate, used to equidistribute the mesh, is obtained from the differences between respective numerical solutions of 5th-order WENO (WENO5) and 3rd-order ENO (ENO3) schemes. The number of grids can be adaptively readjusted based on the solution structure. For higher efficiency, mesh readjustment is performed every few time steps rather than every time step. In addition, a high order conservative interpolation is used to compute the physical solutions on the new mesh from old mesh based on the finite volume ENO reconstruction. Extensive examples suggest that this adaptive method exhibits more accurate resolution of discontinuities for a similar level of computational time comparing with that on a uniform mesh.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , , ,