Article ID Journal Published Year Pages File Type
4645091 Applied Numerical Mathematics 2014 24 Pages PDF
Abstract

We introduce a high resolution fifth-order semi-discrete Hermite central-upwind scheme for multidimensional Hamilton–Jacobi equations. The numerical fluxes of the scheme are constructed by Hermite polynomials which can be obtained by using the short-time assignment of the first derivatives. The extensions of the proposed semi-discrete Hermite central-upwind scheme to multidimensional cases are straightforward. The accuracy, efficiency and stability properties of our schemes are finally demonstrated via a variety of numerical examples.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , , ,