Article ID Journal Published Year Pages File Type
4645199 Applied Numerical Mathematics 2014 12 Pages PDF
Abstract
We investigate a mathematical problem arising from the modeling of maximal erosion rates in geological stratigraphy. A global constraint on ∂tu, the time-derivative of the solution, is the main feature of this model. This leads to a nonlinear pseudoparabolic equation with a diffusion coefficient which is a nonlinear function of ∂tu. Moreover, the problem degenerates in order to take implicitly into account the constraint. In this paper, we develop a numerical scheme based on the discontinuous Galerkin finite element method (DgFem) for its numerical approximation. With a particular choice of the flux at the interface, we prove that the constraint is implicitly satisfied by using piecewise constant approximation. This is confirmed by some numerical experiments.
Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,