Article ID Journal Published Year Pages File Type
4645247 Applied Numerical Mathematics 2014 18 Pages PDF
Abstract

Methods for the approximation of 2D discrete convolution operations are derived for the case when a low-rank approximation of one of the input matrices is available. Algorithms based on explicit computation of discrete convolution and on the Fast Fourier Transform are both described. Applications of the described methods to the computation of cross-correlation and autocorrelation are discussed and illustrated by examples. Both theory and numerical experiments show that the use of low-rank approximations makes it possible to determine accurate approximations of convolution, cross-correlation, and autocorrelation operations at competitive speeds.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, ,