Article ID Journal Published Year Pages File Type
4645392 Applied Numerical Mathematics 2012 8 Pages PDF
Abstract

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretisations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is shown that exponential operator splitting methods and in particular the method of Strang will preserve positivity in certain situations. A numerical illustration of the convergence behaviour is included.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics