Article ID Journal Published Year Pages File Type
4645518 Applied Numerical Mathematics 2012 14 Pages PDF
Abstract

In this paper, we construct a class of extended block boundary value methods (B2VMs) for Volterra delay integro-differential equations and analyze the convergence and stability of the methods. It is proven under the classical Lipschitz condition that an extended B2VM is convergent of order p if the underlying boundary value methods (BVM) has consistent order p. The analysis shows that a B2VM extended by an A-stable BVM can preserve the delay-independent stability of the underlying linear systems. Moreover, under some suitable conditions, the extended B2VMs can also keep the delay-dependent stability of the underlying linear systems. In the end, we test the computational effectiveness by applying the introduced methods to the Volterra delay dynamical model of two interacting species, where the theoretical precision of the methods is further verified.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics