Article ID Journal Published Year Pages File Type
4645624 Applied Numerical Mathematics 2011 11 Pages PDF
Abstract

The Runge–Kutta method is one of the most popular implicit methods for the solution of stiff ordinary differential equations. For large problems, the main drawback of such methods is the cost required at each integration step for computing the solution of a nonlinear system of equations. In this paper, we propose to reduce the cost of the computation by transforming the linear systems arising in the application of Newton's method to Stein matrix equations. We propose an iterative projection method onto block Krylov subspaces for solving numerically such Stein matrix equations. Numerical examples are given to illustrate the performance of our proposed method.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics