Article ID Journal Published Year Pages File Type
4645626 Applied Numerical Mathematics 2011 11 Pages PDF
Abstract

In this paper, a meshless local Petrov–Galerkin (MLPG) method is presented to treat parabolic partial differential equations with Neumann's and non-classical boundary conditions. A difficulty in implementing the MLPG method is imposing boundary conditions. To overcome this difficulty, two new techniques are presented to use on square domains. These techniques are based on the finite differences and the Moving Least Squares (MLS) approximations. Non-classical integral boundary condition is approximated using Simpson's composite numerical integration rule and the MLS approximation. Two test problems are presented to verify the efficiency and accuracy of the method.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics