Article ID Journal Published Year Pages File Type
4645670 Applied Numerical Mathematics 2010 12 Pages PDF
Abstract

In this manuscript we investigate the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al. (2002) [3]. The authors used the discontinuous Galerkin method to solve one-dimensional transient hyperbolic problems and showed that the local error on each element is proportional to a Radau polynomial. The discontinuous Galerkin error estimates under investigation are computed by solving a local steady problem on each element. Here we prove that, for smooth solutions, these a posteriori error estimates at a fixed time t converge to the true spatial error in the L2 norm under mesh refinement.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics