Article ID Journal Published Year Pages File Type
4645736 Applied Numerical Mathematics 2009 15 Pages PDF
Abstract

Multirate methods exploit latency in electrical circuits to simulate the transient behaviour more efficiently. To this end, different step-sizes are used for various subsystems. The size of these time steps reflect the different levels of activity. Following the idea of mixed multirate for ordinary differential equations, a Rosenbrock–Wanner based multirate method is developed for index-1 differential-algebraic equations (DAEs) arising in circuit simulation. To obtain order conditions for a method with two activity levels, P-series (and DA-series) are generalised and combined for an application to partitioned DAE systems. A working scheme and results for a benchmarking circuit are presented.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics