Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4646091 | Applied Numerical Mathematics | 2009 | 16 Pages |
In this article a meshless local Petrov–Galerkin (MLPG) method is given to obtain the numerical solution of the coupled equations in velocity and magnetic field for unsteady magnetohydrodynamic (MHD) flow through a pipe of rectangular section having arbitrary conducting walls. Computations have been carried out for different Hartmann numbers and wall conductivity at various time levels. The method is based on the local weak form and the moving least squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. A time stepping method is employed to deal with the time derivative. Finally numerical results are presented showing the behaviour of velocity and induced magnetic field across the section.