Article ID Journal Published Year Pages File Type
4646149 Applied Numerical Mathematics 2007 10 Pages PDF
Abstract

In this paper, we present an efficient multigrid (MG) algorithm for solving the three-dimensional variable coefficient diffusion equation in cylindrical coordinates. The multigrid V-cycle combines a semi-coarsening in azimuthal direction with the red-black Gauss–Seidel plane (radial-axial plane) relaxation. On each plane relaxation, we further semi-coarsen the axial direction with red-black line relaxation in the radial direction. We also prove the convergence of two-level MG with plane Jacobi relaxation. Numerical results show that the present multigrid method indeed is scalable with the mesh size.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics