Article ID Journal Published Year Pages File Type
4646219 Applied Numerical Mathematics 2008 15 Pages PDF
Abstract

The nonconforming cell boundary element (CBE) methods are proposed. The methods are designed in such a way that they enjoy the mass conservation at the element level and the normal component of fluxes at inter-element boundaries are continuous for unstructured triangular meshes. Normal flux continuity and the optimal order error estimates in a broken H1 norm for the P1 method are established, which are completion of authors' earlier works [Y. Jeon, D. Sheen, Analysis of a cell boundary element method, Adv. Comput. Math. 22 (3) (2005) 201–222; Y. Jeon, E.-J. Park, D. Sheen, A cell boundary element method for elliptic problems, Numer. Methods Partial Differential Equations 21 (3) (2005) 496–511]. Moreover, two second order methods (the and modified methods) and a multiscale CBE method are constructed and numerical experiments are performed. Numerical results show feasibility and effectiveness of the CBE methods.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics