Article ID Journal Published Year Pages File Type
4646284 Applied Numerical Mathematics 2006 15 Pages PDF
Abstract

We use an artificial viscosity term to stabilize discontinuous Galerkin solutions of hyperbolic conservation laws in the presence of discontinuities. Viscous coefficients are selected to minimize spurious oscillations when a kinematic wave equation is subjected to piecewise constant initial data. The same strategy is used with a local linearization in more complex situations. Several one and two-dimensional flow problems illustrate performance. A shock detection scheme [L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math. 48 (2004) 323–338] further sharpens results near discontinuities.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics