Article ID Journal Published Year Pages File Type
4646380 Applied Numerical Mathematics 2006 17 Pages PDF
Abstract

The viscous quantum hydrodynamic equations for semiconductors with constant temperature are numerically studied. The model consists of the one-dimensional Euler equations for the electron density and current density, including a quantum correction and viscous terms, coupled to the Poisson equation for the electrostatic potential. The equations can be derived formally from a Wigner–Fokker–Planck model by a moment method. Two different numerical techniques are used: a hyperbolic relaxation scheme and a central finite-difference method. By simulating a ballistic diode and a resonant tunneling diode, it is shown that numerical or physical viscosity changes significantly the behavior of the solutions. Moreover, the current-voltage characteristics show multiple regions of negative differential resistance and hysteresis effects.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics