Article ID Journal Published Year Pages File Type
4646448 Journal of the Nigerian Mathematical Society 2015 14 Pages PDF
Abstract

A mathematical analysis has been carried out to investigate the effects of internal heat generation/absorption, viscous and ohmic dissipations on steady two-dimensional radiative MHD boundary-layer flow of a viscous, incompressible, electrically conducting nanofluid over a vertical plate. A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations and then solved analytically using HAM and numerically by the fourth order Runge–Kutta integration scheme with shooting method. The effects of different controlling parameters on the dimensionless velocity, temperature and nanoparticle volume fraction profiles are discussed graphically. The reduced Nusslet number and the local Sherwood number are also discussed graphically. It is found that the presence of viscous dissipation, heat generation and magnetic field accelerates the temperature and decelerates the nanosolid volume fraction profile. Furthermore, comparisons have been made with bench mark solutions for a special case and obtained a very good agreement.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , , ,