Article ID Journal Published Year Pages File Type
4646472 Journal of the Nigerian Mathematical Society 2015 21 Pages PDF
Abstract

This present study focuses on the effects of thermophoresis, Dufour, temperature dependent thermal conductivity and viscosity of an incompressible electrically conducting Casson fluid flow along a vertical porous plate in the presence of viscous dissipation, nthnth order chemical reaction and suction. It is assumed that the relationship between the flow rate and pressure drop as the fluid flows through a porous medium is non-linear. Similarity transformations are used to convert the governing equations to a system of nonlinear ordinary coupled differential equations and the numerical solutions for the velocity, temperature and concentration profiles are obtained using shooting method along with Runge-Kutta Gill and Quadratic interpolation (Muller’s scheme). The behaviour of dimensionless velocity, temperature and concentration within the boundary layer has been studied using different values of Prandtl number, Casson parameter, thermophoretic parameter, temperature dependent viscosity, temperature dependent thermal conductivity, Magnetic parameter, local Forchheimer parameter, and local Darcy parameter. The flow controlling parameters are found to have a profound effect on the resulting flow profiles except in some few cases i.e. effect of thermophoretic parameter ττ over velocity and temperature profiles of fluids with constant viscosity and thermal conductivity (ξ=ε=0ξ=ε=0). The local skin friction, Nusselt number and Sherwood number for some cases are also presented.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
,