Article ID Journal Published Year Pages File Type
4647218 Discrete Mathematics 2017 18 Pages PDF
Abstract
We consider a class of sets of words which is a natural common generalization of Sturmian sets and of interval exchange sets. This class of sets consists of the uniformly recurrent tree sets, where the tree sets are defined by a condition on the possible extensions of bispecial factors. We prove that this class is closed under maximal bifix decoding. The proof uses the fact that the class is also closed under decoding with respect to return words.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , , , , , ,