Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4647219 | Discrete Mathematics | 2015 | 23 Pages |
Abstract
A k-cycle system of a multigraph G is an ordered pair (V,C) where V is the vertex set of G and C is a set of k-cycles, the edges of which partition the edges of G. A k-cycle system of λKv is known as a λ-fold k-cycle system of order v. A k-cycle system of λKv(V,C) is said to be enclosed in a k-cycle system of (λ+m)Kv+u(VâªU,P) if CâP and u,mâ¥1. In this paper the enclosing problem for 5-cycle systems is settled in the general situation where the three parameters λ, m, and v are allowed to vary freely and u is constrained to the difficult case of adding two vertices. New graph theoretic approaches are introduced to handle this situation developing an avenue of research that is of interest in its own right.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
John Asplund, C.A. Rodger, Melissa S. Keranen,