Article ID Journal Published Year Pages File Type
4647569 Discrete Mathematics 2013 11 Pages PDF
Abstract

A graph GG is a prime distance graph (respectively, a 2-odd graph) if its vertices can be labeled with distinct integers such that for any two adjacent vertices, the difference of their labels is prime (either 2 or odd). We prove that trees, cycles, and bipartite graphs are prime distance graphs, and that Dutch windmill graphs and paper mill graphs are prime distance graphs if and only if the Twin Prime Conjecture and de Polignac’s Conjecture are true, respectively. We give a characterization of 2-odd graphs in terms of edge colorings, and we use this characterization to determine which circulant graphs of the form Circ(n,{1,k}) are 2-odd and to prove results on circulant prime distance graphs.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,