Article ID Journal Published Year Pages File Type
4648027 Discrete Mathematics 2011 16 Pages PDF
Abstract

In this paper we give some necessary and sufficient conditions for Dembowski–Ostrom polynomials to be planar. These conditions give a simple explanation of the Coulter–Matthews and Ding–Yin commutative semifields and enable us to obtain permutation polynomials from some of the Zha–Kyureghyan–Wang commutative semifields. We then give a generalization of Feng’s construction of Paley type group schemes in extra-special pp-groups of exponent pp and construct a family of Paley type group schemes in what we call the flag groups of finite fields. We also determine the strong multiplier groups of these group schemes. In the last section of this paper, we give a straightforward generalization of the twin prime power construction of difference sets to a construction of Hadamard designs from twin Paley type association schemes.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,