Article ID Journal Published Year Pages File Type
4648355 Discrete Mathematics 2009 13 Pages PDF
Abstract

A weighted graph is a graph provided with an edge-weighting function  ww from the edge set to nonnegative real numbers. Bondy and Fan [Annals of Discrete Math. 41 (1989), 53–69] began the study on the existence of heavy cycles in weighted graphs. Though several results with Dirac-type degree condition can be generalized to an Ore-type one in unweighted graphs, it is shown in Bondy et al. [Discuss. Math. Graph Theory 22 (2002), 7–15] that Bondy and Fan’s theorem, which uses Dirac-type condition, cannot be generalized analogously by using Ore-type condition.In this paper we investigate the property peculiar to weighted graphs, and prove a theorem on the existence of heavy cycles in weighted graphs under an Ore-type condition, which generalizes Bondy and Fan’s theorem. Moreover, we show the existence of heavy cycles passing through some specified vertices.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,