Article ID Journal Published Year Pages File Type
4648831 Discrete Mathematics 2007 11 Pages PDF
Abstract

A subset of vertices (resp. arcs) of a graph G is called a feedback vertex (resp. arc) set of G   if its removal results in an acyclic subgraph. Let f(d,n)f(d,n) (fa(d,n)fa(d,n)) denote the minimum cardinality over all feedback vertex (resp. arc) sets of the Kautz digraph K(d,n)K(d,n). This paper proves that for any integers d⩾2d⩾2 and n⩾1n⩾1f(d,n)=dforn=1,(ϕ⊙θ)(n)n+(ϕ⊙θ)(n-1)n-1for2⩽n⩽7,dnn+dn-1n-1+O(ndn-4)forn⩾8,fa(d,n)=f(d,n+1)forn⩾1,where (ϕ⊙θ)(n)=∑i|nϕ(i)θ(n/i)(ϕ⊙θ)(n)=∑i|nϕ(i)θ(n/i), i|ni|n means i divides n  , θ(i)=di+(-1)idθ(i)=di+(-1)id, ϕ(1)=1ϕ(1)=1 and ϕ(i)=i·∏j=1r(1-1/pj) for i⩾2i⩾2, where p1,…,prp1,…,pr are the distinct prime factors of i, not equal to 1.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , , ,