Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4648920 | Discrete Mathematics | 2007 | 9 Pages |
Abstract
The extremal number ex(n;TKp)ex(n;TKp) denotes the maximum number of edges of a graph of order n containing no topological complete graph TKpTKp as a subgraph. In this paper we give the exact value of the extremal number ex(n;TKp)ex(n;TKp) for ⌈(7n+7)/12⌉⩽p<⌈(2n+1)/3⌉⌈(7n+7)/12⌉⩽p<⌈(2n+1)/3⌉ provided that n-p⩾15n-p⩾15. Furthermore, we find the corresponding extremal graphs for n-p⩾17n-p⩾17.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez,