Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4648932 | Discrete Mathematics | 2007 | 11 Pages |
Abstract
A variation of a classical Turán-type extremal problem is considered as follows: determine the smallest even integer σ(Kr1,r2,…,rℓ,r,s,n)σ(Kr1,r2,…,rℓ,r,s,n) such that every n -term graphic sequence π=(d1,d2,…,dn)π=(d1,d2,…,dn) with term sum σ(π)=d1+d2+⋯+dn⩾σ(Kr1,r2,…,rℓ,r,s,n)σ(π)=d1+d2+⋯+dn⩾σ(Kr1,r2,…,rℓ,r,s,n) has a realization G containing Kr1,r2,…,rℓ,r,sKr1,r2,…,rℓ,r,s as a subgraph. In this paper, we determine σ(Kr1,r2,…,rℓ,r,s,n)σ(Kr1,r2,…,rℓ,r,s,n) for sufficiently large n , where s⩾r⩾rℓ⩾⋯⩾r1⩾0s⩾r⩾rℓ⩾⋯⩾r1⩾0 and r⩾3r⩾3.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Jian-Hua Yin, Jiong-Sheng Li,