Article ID Journal Published Year Pages File Type
4649399 Discrete Mathematics 2010 4 Pages PDF
Abstract

In 1956, W.T. Tutte proved that every 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. It is shown that Sanders’ result is best possible by constructing 4-connected maximal planar graphs with three edges a large distance apart such that any hamiltonian cycle misses one of them. If the maximal planar graph is 5-connected then such a construction is impossible.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,