Article ID Journal Published Year Pages File Type
4649688 Discrete Mathematics 2008 6 Pages PDF
Abstract
Murty [A generalization of the Hoffman-Singleton graph, Ars Combin. 7 (1979) 191-193.] constructed a family of (pm+2)-regular graphs of girth five and order 2p2m, where p⩾5 is a prime, which includes the Hoffman-Singleton graph [A.J. Hoffman, R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. (1960) 497-504]. This construction gives an upper bound for the least number f(k) of vertices of a k-regular graph with girth 5. In this paper, we extend the Murty construction to k-regular graphs with girth 5, for each k. In particular, we obtain new upper bounds for f(k), k⩾16.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , , ,