Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4649923 | Discrete Mathematics | 2008 | 16 Pages |
In a matroid, (X,e)(X,e) is a rooted circuit if X is a set not containing element e and X∪{e}X∪{e} is a circuit. We call X a broken circuit of e . A broken circuit clutter is the collection of broken circuits of a fixed element. Seymour [The matroids with the max-flow min-cut property, J. Combinatorial Theory B 23 (1977) 189–222] proved that a broken circuit clutter of a binary matroid has the max-flow min-cut property if and only if it does not contain a minor isomorphic to Q6Q6. We shall present an analogue of this result in affine convex geometries. Precisely, we shall show that a broken circuit clutter of an element e in a convex geometry arising from two-dimensional point configuration has the max-flow min-cut property if and only if the configuration has no subset forming a ‘Pentagon’ configuration with center e.Firstly we introduce the notion of closed set systems. This leads to a common generalization of rooted circuits both of matroids and convex geometries (antimatroids). We further study some properties of affine convex geometries and their broken circuit clutters.