Article ID Journal Published Year Pages File Type
4650249 Discrete Mathematics 2008 18 Pages PDF
Abstract

We define suballowable sequences of permutations as a generalization of allowable sequences. We give a characterization of allowable sequences in the class of suballowable sequences, prove a Helly-type result on sets of permutations which form suballowable sequences, and show how suballowable sequences are related to problems of geometric realizability. We discuss configurations of points and geometric permutations in the plane. In particular, we find a characterization of pairwise realizability of planar geometric permutations, give two necessary conditions for realizability of planar geometric permutations, and show that these conditions are not sufficient.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,