Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4650471 | Discrete Mathematics | 2008 | 9 Pages |
Abstract
An n -ary operation Q:Σn→ΣQ:Σn→Σ is called an n -ary quasigroup of order |Σ||Σ| if in the relation x0=Q(x1,…,xn)x0=Q(x1,…,xn) knowledge of any n elements of x0,…,xnx0,…,xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1,…,xn)=P(R(xσ(1),…,xσ(k)),xσ(k+1),…,xσ(n))Q(x1,…,xn)=P(R(xσ(1),…,xσ(k)),xσ(k+1),…,xσ(n)) where P and R are (n-k+1)(n-k+1)-ary and k -ary quasigroups, σσ is a permutation, and 1
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Denis S. Krotov,