Article ID Journal Published Year Pages File Type
4650740 Discrete Mathematics 2008 9 Pages PDF
Abstract

Fiber-complemented graphs form a vast non-bipartite generalization of median graphs. Using a certain natural coloring of edges, induced by parallelism relation between prefibers of a fiber-complemented graph, we introduce the crossing graph of a fiber-complemented graph G as the graph whose vertices are colors, and two colors are adjacent if they cross on some induced 4-cycle in G. We show that a fiber-complemented graph is 2-connected if and only if its crossing graph is connected. We characterize those fiber-complemented graphs whose crossing graph is complete, and also those whose crossing graph is chordal.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,