Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4651238 | Discrete Mathematics | 2007 | 8 Pages |
Abstract
Let d(σ)d(σ) stand for the defining number of the colouring σσ. In this paper we consider dmin=minγd(γ) and dmax=maxγd(γ) for the onto χχ-colourings γγ of the circular complete graph Kn,dKn,d. In this regard we obtain a lower bound for dmin(Kn,d)dmin(Kn,d) and we also prove that this parameter is asymptotically equal to χ-1χ-1. Also, we show that when χ⩾4χ⩾4 and s≠0s≠0 then dmax(Kχd-s,d)=χ+2s-3dmax(Kχd-s,d)=χ+2s-3, and, moreover, we prove an inequality relating this parameter to the circular chromatic number for any graph G.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Amir Daneshgar, Hossein Hajiabolhassan, Nasrin Soltankhah,