Article ID Journal Published Year Pages File Type
4651343 Discrete Mathematics 2006 30 Pages PDF
Abstract

We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the characteristic series of labelled paths in the plane. The equivalence holds in the set of series in non-commutative indeterminates. Using it, we derive direct combinatorial proofs of continued fraction expansions for series involving known combinatorial quantities: the Catalan numbers, the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Eulerian numbers….…. We also show combinatorial interpretations for the coefficients of the elliptic functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and Meixner polynomials. Other applications include cycles of binomial coefficients and inversion formulae. Most of the proofs follow from direct geometrical correspondences between objects.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,