Article ID Journal Published Year Pages File Type
4651711 Electronic Notes in Discrete Mathematics 2015 8 Pages PDF
Abstract

Given a graph G with n vertices and an Abelian group A of order n, an A-distance antimagic labelling of G is a bijection from V(G) to A such that the vertices of G have pairwise distinct weights, where the weight of a vertex is the sum (under the operation of A) of the labels assigned to its neighbours. An A-distance magic labelling of G is a bijection from V(G) to A such that all vertices of G have the same weight. In this paper we study these new labellings with a focus on product graphs.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics