Article ID Journal Published Year Pages File Type
4651889 Electronic Notes in Discrete Mathematics 2015 9 Pages PDF
Abstract

An edge- (vertex-) coloured graph is rainbow connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring of G. In this paper we propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several new and known results, focusing on random regular graphs.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics