Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4651890 | Electronic Notes in Discrete Mathematics | 2015 | 6 Pages |
Abstract
We prove that for every graph H, if a graph G has no H minor, then V(G) can be partitioned into three sets such that the subgraph induced on each set has no component of size larger than a function of H and the maximum degree of G. This answers a question of Esperet and Joret and improves a result of Alon, Ding, Oporowski and Vertigan and a result of Esperet and Joret. As a corollary, for every positive integer t, if a graph G has no Kt+1 minor, then V(G) can be partitioned into 3t sets such that the subgraph induced on each set has no component of size larger than a function of t. This corollary improves a result of Wood.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics