Article ID Journal Published Year Pages File Type
4651920 Electronic Notes in Discrete Mathematics 2015 4 Pages PDF
Abstract

An old conjecture by Jünger, Reinelt and Pulleyblank states that every 2-edge-connected planar graph can be decomposed into paths of length 3 and triangles, provided its size is divisible by 3. We prove the conjecture for a class of planar graphs including all 2-edge-connected series-parallel graphs. We also present a 2-edge-connected non-planar graph that can be embedded on the torus and admits no decomposition into paths of length 3 and triangles.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics