Article ID Journal Published Year Pages File Type
4652413 Electronic Notes in Discrete Mathematics 2009 8 Pages PDF
Abstract

An edge/non-edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. We focus our study on contractible edges and non-edges in chordal graphs. Firstly, we characterize contractible edges in chordal graphs using properties of tree decompositions with respect to minimal vertex separators. Secondly, we show that in every chordal graph each non-edge is contractible. We also characterize non-edges whose contraction leaves a k-connected chordal graph.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics