Article ID Journal Published Year Pages File Type
4652523 Electronic Notes in Discrete Mathematics 2008 6 Pages PDF
Abstract

In this extended abstract we develop a notion of ×-homotopy of graph maps that is based on the internal hom associated to the categorical product. We show that graph ×-homotopy is characterized by the topological properties of the so-called Hom complex, a functorial way to assign a poset to a pair of graphs. Along the way we establish some structural properties of Hom complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. We end with a discussion of graph homotopies arising from other internal homs, including the construction of ‘A-theory’ associated to the cartesian product in the category of reflexive graphs. For proofs and further discussions we refer the reader to the full paper [Anton Dochtermann. Hom complexes and homotopy theory in the category of graphs. arXiv:math.CO/0605275].

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics