Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4652588 | Electronic Notes in Discrete Mathematics | 2011 | 6 Pages |
Abstract
In 2009, Janson [Poset limits and exchangeable random posets, Institut Mittag-Leffler preprint, 36pp, arXiv:0902.0306] extended the recent theory of graph limits to posets, defining convergence for poset sequences and proving that every such sequence has a limit object. In this paper, we focus on k-dimensional poset sequences. This restriction leads to shorter proofs and to a more intuitive limit object. As before, the limit object can be used as a model for random posets, which generalizes the well known random k-dimensional poset model. This investigation also leads to a definition of quasirandomness for k-dimensional posets, which can be captured by a natural distance that measures the discrepancy of a k-dimensional poset.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics