Article ID Journal Published Year Pages File Type
4652588 Electronic Notes in Discrete Mathematics 2011 6 Pages PDF
Abstract

In 2009, Janson [Poset limits and exchangeable random posets, Institut Mittag-Leffler preprint, 36pp, arXiv:0902.0306] extended the recent theory of graph limits to posets, defining convergence for poset sequences and proving that every such sequence has a limit object. In this paper, we focus on k-dimensional poset sequences. This restriction leads to shorter proofs and to a more intuitive limit object. As before, the limit object can be used as a model for random posets, which generalizes the well known random k-dimensional poset model. This investigation also leads to a definition of quasirandomness for k-dimensional posets, which can be captured by a natural distance that measures the discrepancy of a k-dimensional poset.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics