Article ID Journal Published Year Pages File Type
4652843 Electronic Notes in Discrete Mathematics 2007 8 Pages PDF
Abstract

For a given graph G and a positive integer r the r-path graph, Pr(G), has for vertices the set of all paths of length r in G. Two vertices are adjacent when the intersection of the corresponding paths forms a path of length r−1, and their union forms either a cycle or a path of length r+1 in G. Let be the k-iteration of r-path graph operator on a connected graph G. Let H be a subgraph of . The k-history is a subgraph of G that is induced by all edges that take part in the recursive definition of H. We present some general properties of k-histories and give a complete characterization of graphs that are k-histories of vertices of 2-path graph operator.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics