Article ID Journal Published Year Pages File Type
4652858 Electronic Notes in Discrete Mathematics 2007 8 Pages PDF
Abstract

The concept of "antimatroid with repetition" was coined by Bjorner, Lovasz and Shor in 1991 as an extension of the notion of antimatroid in the framework of non-simple languages [Björner A., L. Lovász, and P. R. Shor, Chip-firing games on graphs, European Journal of Combinatorics 12 (1991), 283–291]. There are some equivalent ways to define antimatroids. They may be separated into two categories: antimatroids defined as set systems and antimatroids defined as languages. For poly-antimatroids we use the set system approach. In this research we concentrate on interrelations between geometric, algorithmic, and lattice properties of poly-antimatroids. Much to our surprise it turned out that even the two-dimensional case is not trivial.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics